image image
Our Centres
Home / JEE Syllabus

JEE B.Arch Syllabus Joint Entrance Examination (Main) - 2025

JEE Syllabus

JEE Main 2025 Syllabus has been declared on the official website of NTA. No changes had been made to JEE Syllabus 2025. The authorities have provided applicants with an internal choice in the question paper. NTA JEE Main 2025 Syllabus varies depending upon the sections or subjects – Physics, Chemistry, Mathematics, Aptitude, Drawing and Planning. Check JEE Main 2025 Exam Pattern

The examination will be conducted for 3 separate papers B.E/B. Tech, B.Arch and B.Planning. Paper 1 is for B.E/B. Tech, Paper 2 is for B.Arch and Paper 3 is for B.Planning. Candidates seeking admissions to B.E./B.Tech and B.Arch courses to IITs, NITs, IIITs and CFTIs can fill JEE Main 2025 registration form online till 31 March 2025Check JEE Main 2025 Registration Process

  • JEE Main B.E/B.Tech (Paper 1) Syllabus cover topics from Mathematics, Physics and Chemistry.
  • JEE Main 2025 Syllabus for B.Arch (Paper 2A) cover topics from Mathematics, Drawing and Aptitude.
  • JEE Main 2025 Syllabus for B.Plan (Paper 2B) cover topics from Mathematics, Planning and Aptitude.

NATA Previous Year Question Papers

JEE Main Syllabus 2025 – Overview

  • The syllabus for Paper 1 comprises three major subjects – Physics, Chemistry and Mathematics. This paper is specific for admissions to B.Tech/B.E courses.
  • Paper 2 syllabus comprises three major subjects which are Aptitude, Drawing and Mathematics. This paper is conducted for admissions to B.Arch Courses.
  • Finally, Paper 3 syllabus comprises three subjects which are Aptitude, Planning-based questions and Mathematics. This paper is conducted for admissions to the B. Planning course of IITs.

JEE Main Syllabus 2025: Subject-wise Syllabus

The JEE Main Syllabus is similar to that of the JEE Advanced examination. However, the difficulty level is different as the students may face more difficult questions in the JEE Advanced examination, which might have more than one answer. In order to acquire a good rank, the students need to know the JEE Main syllabus and JEE Main exam pattern and also keep their practice thorough.


nata vs jee main paper 2

JEE Main 2025 Chemistry Syllabus

The JEE Main Chemistry Syllabus is divided into three sections which are Physical Chemistry, Organic Chemistry and Inorganic Chemistry. The students must go through each of these subsections in order to score well.

Section A – Physical Chemistry

Following section caters to the entire NTA JEE Main Syllabus 2025 for Chemistry-

Unit Topic Details
1. Some Basic Concepts of Chemistry
  • Matter and its nature
  • Dalton’s Atomic Theory
  • Concept of atom, molecule, element and compound
  • Physical Quantities, SI Units, Atomic and molecular mass
  • Laws of Chemical Combination, Chemical Equation and Stoichiometry
2. States of Matter
  • Gaseous State – Measurable properties, Gas Laws, Kinetic theory of gases, Ideal Gas Equation, Van der Waals Equation and more
  • Liquid State – Properties of liquids Vapor pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only)
  • Solid State – Classification; Bragg’s Law; Unit cell and lattices; Electrical and Magnetic Properties
3. Atomic Structure
  • Thomson and Rutherford Atomic Models
  • Bohr Model of Hydrogen atom
  • Dual Nature of Matter, De-Broglie Relationship, Heisenberg Uncertainty Principle
  • Pauli’s Exclusion Principle and Hund’s Rule
  • Shapes of s, p and d orbitals
4. Chemical Bonding and molecular structure
  • Kossel – Lewis Approach to Chemical Bond Formation
  • Ionic Bonding
  • Covalent Bonding
  • Quantum Mechanical Approach to Covalent Bonding
  • Molecular Orbital Theory
5. Chemical Thermodynamics
  • Fundamentals of thermodynamics, System and surroundings, Extensive and Intensive Properties State Functions, Types of Processes
  • First Law of Thermodynamics – Concept of work, heat, internal energy and enthalpy, heat capacity, molar heat capacity.
  • Hess’s Law of constant heat Summation, Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, etc.
  • Second Law of Thermodynamics – Spontaneity of Processes;
  • ∆S of the universe and ∆G as the criteria for spontaneity
6. Solutions
  • Different methods for expressing concentration of solution – molality, molarity, mole fraction,
  • Percentage by volume and mass both, vapour pressure of solutions and
  • Raoult’s Law – ideal and no ideal solutions, vapor pressure
  • Colligative properties of dilute solutions,
  • Relative lowering of vapor pressure, depression of freezing point,
  • Elevation of boiling of boiling point and osmotic pressure
  • Determination of molecular mass using colligative properties,
  • Abnormal value of molar mass,
  • Van Hoff Factor and its significance
7. Equilibrium
  • Meaning of Equilibrium, Concept of dynamic equilibrium
  • Equilibria involving Physical Processes – Law of Chemical Equilibrium,
  • Equilibrium constants (Kp and Kc) and their significance,
  • Significance of ∆G and ∆G° in chemical equilibria,
  • Factors affecting equilibrium concentrations, pressure, temperature effect of catalyst;
  • Le Chatelier’s principle.
  • Equilibria involving Physical Processes – solid-liquid, liquid-gas and solid-gas equilibria,
  • Henry’s Law, General characteristics of equilibrium involving physical processes.
  • Ionic Equilibrium – Weak and strong electrolytes, ionization of electrolytes,
  • Various concepts of acids and bases (Arrhenius Bronsted – Lowry and Lewis) and their ionization,
  • Acid-base equilibria (including multi stage ionization) and ionization constants,
  • Ionization of water, pH scale, common ion effect,
  • Hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products and buffer solutions.
8. Redox Reactions and Electrochemistry
  • Electrical concepts of oxidation and reductions, redox reactions,
  • Oxidation number, rules for assigning oxidation number, balancing of redox reactions
  • Electrolytic and metallic conduction, conductance in electrolytic solutions,
  • Molar conductivities and their variation with concentration,
  • Koulrausch’s Law and its applications
  • Electrochemical Cells – Electrolytic and Galvanic Cells, different types of electrodes, electrode potentials,
  • Half-cell and cell reactions, emf of a galvanic cell and its measurement
  • Nernst equation and its applications
9. Chemical Kinetics
  • Rate of a chemical reaction, factors affecting the rate of reactions
  • Elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units,
  • Differential and integral forms of zero and first order reactions, their characteristics and half-lives,
  • The effect of temperature on the rate of reactions.
  • Arrhenius theory, activation energy and its calculation,
  • Collision theory of bimolecular gaseous reactions (no derivation).
10. Surface Chemistry
  • Adsorption: Physisorption and chemisorption and their characteristics,
  • Factors affecting the adsorption of gases on solids
  • Freundlich and Langmuir adsorption isotherms, adsorption from solutions.
  • Catalysis: Homogeneous and heterogeneous, activity and selectivity of solid catalysts,
  • Enzyme catalysis, and its mechanism.
  • Colloidal state: Distinction among true solutions, colloids, and suspensions,
  • Classification of colloids: lyophilic, lyophobic.
  • Multimolecular, macromolecular and associated colloids (micelles), preparation and properties of colloids
  • Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation, and flocculation.
  • Emulsions and their characteristics.

Section B – Inorganic Chemistry

Given below are chapters and topics from Inorganic Chemistry for JEE Main 2025. Major focus is on the Periodic table and its elements.

Unit Topic Details
11. Classification of elements and periodicity in properties
  • Modern periodic law and present form of the periodic table.
  • s, p, d and f block elements.
  • Periodic trends in properties of elements atomic and ionic radii, ionization enthalpy.
  • Electrons gain enthalpy, valence, oxidation states and chemical reactivity.
12. General Principles and processes of isolation of metals
  • Steps involved in the extraction of metals
  • Concentration, reduction (chemical and electrolytic methods) and refining
  • Special reference to the extraction of Al, Cu, Zn, and Fe.
  • Modes of occurrence of elements in nature, minerals, ores.
  • Thermodynamic and electrochemical principles involved in the extraction of metals.
13. Hydrogen
  • The position of hydrogen in periodic table, isotopes, preparation, properties, and uses of hydrogen.
  • Structure, preparation, reactions, and uses of hydrogen peroxide.
  • Physical and chemical properties of water and heavy water.
  • Hydrogen as a fuel
  • Classification of hydrides: ionic, covalent and interstitial.
14. S-Block Elements (Alkali and Alkali Earth Metals)
  • Group 1 and Group 2 Elements: General introduction,
  • Electronic configuration and general trends in physical and chemical properties of elements,
  • Anomalous properties of the first element of each group, diagonal relationships.
  • Preparation and properties of some important compounds
  • Sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogen carbonate.
  • Industrial uses of lime, limestone, Plaster of Paris and cement.
  • The biological significance of Na, K, Mg and Ca.
15. P-Block Elements
  • Group 13
  • Preparations and properties of Boron and aluminium;
  • Structure, properties and uses of borax, boric acid, diborane, boron trifluoride, aluminium chloride, alums.
  • Group 14
  • Tendency for Catenation;
  • Structure, properties and uses of Allotropes and oxides of carbon,
  • Silicon tetrachloride, silicates, zeolites and silicones
  • Group 15
  • Properties and uses of nitrogen and phosphorus;
  • Allotropic forms of Phosphorus;
  • Preparation, properties, structure and uses of ammonia, nitric acid, phosphine halides, (PCLჳ, PCLཏ);
  • Structures of oxides and oxoacids of nitrogen and phosphorus
  • Group 16
  • Preparation, properties, structures and uses of ozone;
  • Allotropic forms of sulphur;
  • Preparation, properties, structure and uses of sulphuric acid (including its industrial preparation);
  • Structures of oxoacids of sulphur
  • Group 17
  • Preparation, properties and uses of hydrochloric acid;
  • Trends in the acidic nature of hydrogen halides;
  • Structure of interhalogen compounds and oxides and oxoacids of halogens
  • Group 18
  • Occurrence and uses of noble gases;
  • Structures of Fluorides and oxides of xenon
16. D and f- Block Elements
  • Transition Elements
  • General introduction, electronic configuration, occurrence and characteristics,
  • General trends in properties of the first-row transition elements
  • Physical properties, ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties,
  • Complex formation, interstitial compounds, alloy formation.
  • Preparation, properties, and uses of K2Cr2O7 and KMnO4.
  • Inner Transition Elements: Lanthanides, Electronic configuration, oxidation states, chemical reactivity and lanthanide contraction, and
  • Actinoids: Electronic configuration and oxidation states.
17. Coordination Compounds
  • Introduction to coordination compounds,
  • Werner’s theory.
  • ligands, coordination number, denticity, chelation.
  • IUPAC nomenclature of mononuclear coordination compounds, isomerism.
  • Bonding-Valence bond approach
  • Basic ideas of Crystal field theory, colour and magnetic properties.
  • Importance of coordination compounds (in qualitative analysis, extraction of metals and in biological systems).
18. Environmental Chemistry
  • Environmental pollution: Atmospheric, water, and soil.
  • Atmospheric pollution: Tropospheric and stratospheric.
  • Gaseous pollutants: Oxides of carbon, nitrogen, and sulfur, hydrocarbons;
  • Their sources, harmful effects, and prevention.
  • Greenhouse effect and Global warming, acid rain.
  • Particulate pollutants: Smoke, dust, smog, fumes, mist;
  • Their sources, harmful effects, and prevention.
  • Stratospheric pollution: Formation and breakdown of ozone, depletion of ozone layer, its mechanism and effects.
  • Water Pollution: Major pollutants such as pathogens, organic wastes, and chemical pollutants;
  • Their harmful effects and prevention.
  • Soil pollution: Major pollutants such as Pesticides (insecticides, herbicides and fungicides)
  • Their harmful effects and prevention.
  • Strategies to control environmental pollution.

nata vs jee main paper 2

Section C – Organic Chemistry

Organic Chemistry Syllabus for JEE Main 2025 is given below. All chapters in Organic Chemistry are important. Hydrocarbons and Organic compounds usually carry a very high weightage in Organic Chemistry.

Unit Topic Details
19. Purification and Characterization of Organic Compounds
  • Purification – Crystallization, sublimation, distillation, differential extraction, and
  • Chromatography principles and their applications.
  • Qualitative Analysis – Detection of nitrogen, sulfur, phosphorus, and halogens.
  • Quantitative Analysis (basic principles only) –
  • Estimation of carbon, hydrogen, nitrogens, halogens, sulphur and phosphorus
  • Calculations of Empirical and Molecular Formulae;
  • Numerical Problems in organic quantitative analysis
20. Some basic principles of organic chemistry
  • Tetravalency of Carbon, Shapes of simple molecules – hybridization (s and p)
  • Classification of organic compounds based on functional groups: -C = C- and those containing halogens, oxygen, nitrogen, and sulfur;
  • Homologous series.
  • Isomerism – structural and stereoisomerism
  • Nomenclature – Covalent bond fission
  • Homolytic and heterolytic: free radicals, carbocations, and carbanions;
  • Stability of carbocations and free radicals, electrophiles and nucleophiles.
  • Electronic displacement in a covalent bond
  • Inductive effect, electromeric effect, resonance, and hyperconjugation.
  • Common types of organic directions: Substitution, addition, elimination and rearrangement.
21. Hydrocarbons
  • Classification, isomerism, IUPAC nomenclature,
  • General methods of preparation, properties and reactions.
  • Alkanes – Conformations;
  • Sawhorse and Newman projections (of ethane);
  • Mechanism of halogenation of alkanes.
  • Alkenes – Geometrical Isomerism
  • Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoff’s and peroxide effect);
  • Ozonolysis, oxidation, and polymerization.
  • Alkynes – Acidic character;
  • Addition of hydrogen, halogens, water and hydrogen halides;
  • Polymerization.
  • Aromatic Hydrocarbons – Nomenclature, Benzene Structure and Atomicity
  • Mechanism of electrophilic substitution – halogenation, nitration,
  • Friedel Crafts alkylation and acylation,
  • Directive influence of the functional group in monosubstituted benzene.
22. Organic Compounds Containing Halogens
  • General Methods of preparation, properties and reactions
  • Nature of C-X Bond
  • Mechanisms of substitution reactions
  • Uses, Environmental effects of chloroform, iodoform, freons and DDT
23. Organic Compounds containing Oxygen
  • General methods of preparation, properties, reactions and uses
  • Alcohol – Identification of primary, secondary and tertiary alcohols;
  • Mechanism of dehydration.
  • Phenols – Acidic nature, electrophilic substitution reactions
  • Halogenation, nitration, and sulphonation,
  • Reimer Tiemann reaction.
  • Ethers – Structures
  • Aldehyde and Ketones – Nature of carbonyl group;
  • Nucleophilic addition to >C=O group
  • Relative reactivities of aldehydes and ketones
  • Important reactions such as Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives), Grignard reagent;
  • Oxidation; reduction (Wolff Kishner and Clemmensen);
  • The acidity of hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction.
  • Chemical Tests to distinguish between aldehydes and ketones.
  • Carboxylic Acid – Acidic strength and factors affecting it.
24. Organic Compounds Containing Nitrogen
  • General methods of preparation, properties, reactions and uses
  • Amines – Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character.
  • Diazonium Salts – Importance in synthetic organic chemistry.
25. Polymers
  • General Introduction and classification of polymers,
  • General methods of polymerization, addition and condensation, co-polymerization
  • Natural and synthetic rubber and vulcanization
  • Some important polymers with emphasis on monomers and uses
  • Polyethene, nylon, polyester, and bakelite.
26. Biomolecules
  • General Introduction and importance of biomolecules
  • Carbohydrates – Classification: aldoses and ketoses;
  • Monosaccharides (glucose and fructose), constituent monosaccharides or oligosaccharides (sucrose, lactose, maltose) and polysaccharides (starch, cellulose, glycogen).
  • Proteins – Elementary Idea of amino acids, peptide bond, polypeptides;
  • Proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.
  • Vitamins – Classification and Functions
  • B Chemical Constitution of DNA and RNA, Biological Functions of Nuclei Acids
27. Chemistry in Everyday life
  • Chemicals in medicines: Analgesics, tranquillizers, antiseptics, disinfectants, antimicrobials,
  • Antifertility drugs, antibiotics, antacids, antihistamines, their meaning and common examples.
  • Chemicals in food: Preservatives, artificial sweetening agents common examples.
  • Cleansing Agents – Soaps and detergents, cleansing action
28. Principles related to Practical Chemistry
  • Detection of extra elements (N, S, halogens) in organic compounds.
  • Detection of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl and amino groups in organic compounds.
  • The chemistry involved in the preparation of the following:
  • Inorganic compounds
  • Mohr’s salt, potash alum, and Organic compounds
  • Acetanilide, p-nitro acetanilide, aniline yellow, iodoform.
  • The chemistry involved in the titrimetric exercises: Acids bases and the use of indicators,
  • Oxalic-acid vs KMnO4,
  • Mohr’s salt vs KMnO4.
  • Chemical principles involved in the qualitative salt analysis:
  • Cations: Pb2+, Cu2+, AI3+, Fe3+, Zn2+, Ni2+, Ca2+, Ba2+, Mg2+, NH4+, and
  • Anions: CO32-, S2-, SO42-, NO2-, NO3-, CI-, Br, I. (Insoluble salts excluded).
  • Chemical principles involved in the following experiments: Enthalpy of solution of CuSO4, Enthalpy of neutralization of strong acid and strong base,
  • Preparation of lyophilic and lyophobic sols, and Kinetic study of the reaction of iodide ion with hydrogen peroxide at room temperature.

nata vs jee main paper 2

Weightage of JEE Main Chemistry Syllabus

An analysis of the Chemistry paper of JEE Main examination 2025 have been given below:

Chemistry Important Topics Weightage (%)
Inorganic Chemistry 29
Organic Chemistry 36
Physical Chemistry 35

JEE Main 2025 Physics Syllabus

The JEE Main Physics Syllabus is divided into two major sections — Section A and Section B. Section A comprises 80% of the question paper and mainly has theoretical questions. Section B comprises 20% of the question paper and has practical-based questions.

Following section caters to the detailed NTA JEE Main syllabus 2025 of Physics

Unit Topic Details
1 Physics and Measurement
  • Physics, Technology and society, S.I. units,
  • Fundamental and derived units.
  • Least count, accuracy and precision of measuring instruments, Errors in measurement,
  • Dimensions of Physical quantities, dimensional analysis and its applications
2 Kinematics
  • Frame of reference.
  • Motion in a straight line: Position-time graph, speed and velocity.
  • Uniform and non-uniform motion, average speed and instantaneous velocity
  • Uniformly accelerated motion, velocity-time, position-time graphs, relations for uniformly accelerated motion.
  • Scalars and Vectors, Vector addition and Subtraction,
  • Zero Vector, Scalar and Vector products, Unit Vector, Resolution of a Vector
  • Relative Velocity, Motion in a plane.
  • Projectile Motion, Uniform Circular Motion
3 Laws of Motion
  • Force and Inertia,
  • Newton’s First Law of motion;
  • Momentum, Newton’s Second Law of motion; Impulse;
  • Newton’s Third Law of motion.
  • Law of conservation of linear momentum and its applications, Equilibrium of concurrent forces.
  • Static and Kinetic friction, Laws of friction, Rolling friction.
  • Dynamics of uniform circular motion: Centripetal force and its applications,
4 Work, Energy and Power
  • Work done by a constant force and a variable force; Kinetic and potential energies, Work-Energy theorem
  • Power
  • Potential energy of a spring, Conservation of mechanical energy, Conservative and nonconservative forces;
  • Elastic and inelastic collisions in one and two dimensions.
5 Rotational Motion
  • Centre of mass of a two-particle system, Centre of mass of a rigid body
  • Basic concepts of rotational motion;
  • Moment of a force, torque, angular momentum, conservation of angular momentum and its applications
  • Moment of inertia, Radius of gyration
  • Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems and their applications.
  • Rigid body rotation, Equations of rotational motion
6 Gravitation
  • The Universal law of gravitation
  • Acceleration due to gravity and its variation with altitude and depth
  • Kepler’s laws of planetary motion
  • Gravitational potential energy; gravitational potential.
  • Escape velocity.
  • Orbital velocity of a satellite. Geostationary satellites.
7 Properties of Solids and Liquids
  • Elastic behaviour, Stress-strain relationship,
  • Hooke’s Law, Young’s modulus, bulk modulus, modulus of rigidity.
  • Pressure due to a fluid column
  • Pascal’s law and its applications
  • Viscosity, Stokes’ law, terminal velocity, streamline and turbulent flow,
  • Reynolds number
  • Bernoulli’s principle and its applications
  • Surface energy and surface tension, angle of contact, application of surface tension – drops, bubbles and capillary rise
  • Heat, temperature, thermal expansion;
  • Specific heat capacity, calorimetry
  • Change of state, latent heat
  • Heat transfer-conduction, convection and radiation, Newton’s law of cooling
8 Thermodynamics
  • Thermal equilibrium, zeroth law of thermodynamics, concept of temperature
  • Heat, work and internal energy
  • First law of thermodynamics
  • The second law of thermodynamics: reversible and irreversible processes
  • Carnot engine and its efficiency
9 Kinetic Theory of Gases
  • Equation of state of a perfect gas, work done on compressing a gas.
  • Kinetic theory of gases -assumptions, concept of pressure. Kinetic energy and temperature: rms speed of gas molecules
  • Degrees of freedom, Law of equipartition of energy
  • Applications to specific heat capacities of gases Mean free path
  • Avogadro’s number
10 Oscillations and Waves
  • Periodic motion – period, frequency, displacement as a function of time.
  • Periodic functions
  • Simple harmonic motion (S.H.M.) and its equation; phase; oscillations of a spring -restoring force and force constant;
  • Energy in S.H.M. – kinetic and potential energies; Simple pendulum – derivation of expression for its time period
  • Free, forced and damped oscillations,
  • Resonance
  • Wave motion
  • Longitudinal and transverse waves, speed of a wave
  • Displacement relation for a progressive wave
  • Principle of superposition of waves, reflection of waves, Standing waves in strings and organ pipes
  • Fundamental mode and harmonics, Beats, Doppler effect in sound
11 Electrostatics
  • Electric charges: Conservation of charge, Coulomb’s law-forces between two point charges, forces between multiple charges
  • Superposition principle and continuous charge distribution
  • Electric field: Electric field due to a point charge, Electric field lines, Electric dipole, Electric field due to a dipole, Torque on a dipole in a uniform electric field
  • Electric flux, Gauss’s law and its applications to find field due to infinitely long uniformly charged straight wire,
  • Uniformly charged infinite plane sheet and uniformly charged thin spherical shell
  • Electric potential and its calculation for a point charge, electric dipole and system of charges.
  • Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field.
  • Conductors and insulators, Dielectrics and electric polarization, capacitor, combination of capacitors in series and in parallel,
  • Capacitance of a parallel plate capacitor with and without dielectric medium between the plates, Energy stored in a capacitor.
12 Current Electricity
  • Electric current, Drift velocity, Ohm’s law, Electrical resistance,
  • Resistances of different materials, V-I characteristics of Ohmic and non-ohmic conductors
  • Electrical energy and power, Electrical resistivity, Colour code for resistors
  • Series and parallel combinations of resistors; Temperature dependence of resistance.
  • Electric Cell and its Internal resistance,
  • Potential difference and emf of a cell, combination of cells in series and in parallel
  • Kirchhoff’s laws and their applications
  • Wheatstone bridge, Metre bridge
  • Potentiometer – principle and its applications.
13 Magnetic Effects of Current and Magnetism
  • Biot – Savart law and its application to current carrying circular loop.
  • Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid.
  • Force on a moving charge in uniform magnetic and electric fields.
  • Cyclotron
  • Force on a current-carrying conductor in a uniform magnetic field.
  • Force between two parallel current-carrying conductors-definition of ampere,
  • Torque experienced by a current loop in uniform magnetic field
  • Moving coil galvanometer, its current sensitivity and conversion to ammeter and voltmeter.
  • Current loop as a magnetic dipole and its magnetic dipole moment.
  • Bar magnet as an equivalent solenoid, magnetic field lines;
  • Earth’s magnetic field and magnetic elements.
  • Para-, dia-, and ferro- magnetic substances.
  • Magnetic susceptibility and permeability, Hysteresis, Electromagnets and permanent magnets.
14 Electromagnetic Induction and Alternating Currents
  • Electromagnetic induction
  • Faraday’s law, induced emf and current
  • Lenz’s Law, Eddy currents
  • Self and mutual inductance
  • Alternating currents, peak and rms value of alternating current/voltage
  • Reactance and Impedance; LCR series circuit, Resonance
  • Quality factor, power in AC circuits, wattless current.
  • AC Generator and Transformer.
15 Electromagnetic Waves
  • Electromagnetic waves and their characteristics.
  • Transverse nature of electromagnetic waves.
  • Electromagnetic spectrum(radio waves, microwaves, infrared, visible, ultraviolet, X rays, gamma rays).
  • Applications of e.m. waves.
16 Optics
  • Reflection and refraction of light at plane and spherical surfaces, mirror formula,
  • Total internal reflection and its applications,
  • Deviation and Dispersion of light by a prism, Lens Formula, Magnification, Power of a Lens,
  • Combination of thin lenses in contact, Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers.
  • Wave optics: wavefront and Huygens’ principle,
  • Laws of reflection and refraction using Huygens principle.
  • Interference, Young’s double slit experiment and expression for fringe width, coherent sources and sustained interference of light.
  • Diffraction due to a single slit, width of central maximum.
  • Resolving power of microscopes and astronomical telescopes,
  • Polarisation, plane polarized light
  • Brewster’s law, uses of plane polarized light and Polaroids.
17 Dual Nature of Matter and Radiation
  • Dual nature of radiation
  • Photoelectric effect,
  • Hertz and Lenard’s observations
  • Einstein’s photoelectric equation
  • Particle nature of light
  • Matter waves-wave nature of the particle, de Broglie relation.
  • Davis son-Germer experiment.
18 Atoms and Nuclei
  • Alpha-particle scattering experiment
  • Rutherford’s model of the atom
  • Bohr model, energy levels, hydrogen spectrum
  • Composition and size of the nucleus, atomic masses, isotopes, isobars, and isotones
  • Radioactivity-alpha, beta and gamma particles/rays and their properties
  • Radioactive decay law
  • Mass-energy relation, mass defect
  • Binding energy per nucleon and its variation with mass number, nuclear fission and fusion.
19 Electronic Devices
  • Semiconductors
  • Semiconductor diode: I-V characteristics in forward and reverse bias
  • Diode as a rectifier
  • 1-V characteristics of LED, photodiode, solar cell and Zener diode; Zener diode as a voltage regulator
  • Junction transistor, transistor action, characteristics of a transistor
  • Transistor as an amplifier(common emitter configuration) and oscillator
  • Logic gates (OR, AND, NOT, NAND and NOR), Transistor as a switch
20 Communication Systems
  • Propagation of electromagnetic waves in the atmosphere
  • Sky and space wave propagation, Need for modulation,
  • Amplitude and Frequency Modulation, Bandwidth of signals,
  • Bandwidth of Transmission medium,
  • Basic Elements of a Communication System (Block Diagram only).

Weightage of JEE Main Physics Syllabus

Here we have been an in-depth analysis of the JEE Main Physics Paper 2025-

Physics Important Topics Weightage (%)
Electrodynamics 23
Heat & Thermodynamics 13
Mechanics 25
Modern Physics 19
Optics 14
SHM & Waves 6

JEE Main 2025 Mathematics Syllabus

The mathematics section is included in all three papers of JEE Main 2025. The main topics of Mathematics that are included in the JEE Main Syllabus 2025 are Trigonometry, Algebra, Calculus and Coordinate Geometry.

Unit Topic Details
1. Sets, Relations and Functions
  • Sets and their representation
  • Union, intersection and complement of sets and their algebraic properties
  • Power set
  • Relation, Types of relations, equivalence relations, functions
  • One-one, into and onto functions, composition of functions
2. Complex Number and Quadratic Equations
  • Complex numbers as ordered pairs of reals
  • Representation of complex numbers in the form (a+ib) and their representation in a plane, Argand diagram.
  • Algebra of complex numbers, modulus and argument (or amplitude) of a complex number, square root of a complex number.
  • Triangle inequality.
  • Quadratic equations in real and complex number systems and their solutions.
  • The relation between roots and coefficients, nature of roots, the formation of quadratic equations with given roots.
3. Matrices and Determinants
  • Algebra of matrices, types of matrices, and matrices of order two and three.
  • Properties of determinants, evaluation of determinants, the area of triangles using determinants.
  • Adjoint and evaluation of inverse of a square matrix using determinants and elementary transformations.
  • Test of consistency and solution of simultaneous linear equations in two or three variables using determinants and matrices
4. Permutations and Combinations
  • The fundamental principle of counting.
  • Permutation as an arrangement and combination as a selection.
  • The meaning of P (n,r) and C (n,r). Simple applications.
5. Mathematical Induction
  • The principle of Mathematical Induction and its simple applications.
6. Binomial Theorem
  • Binomial theorem for a positive integral index.
  • General term and middle term.
  • Properties of Binomial coefficients and simple applications.
7. Sequences and Series
  • Arithmetic and Geometric progressions, insertion of arithmetic.
  • Geometric means between two given numbers.
  • The relation between A.M. and G.M.
  • Sum up to n terms of special series: Sn, Sn2, Sn3
  • Arithmetic – Geometric progression.
8. Limit, Continuity and Differentiability
  • Real-valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic and exponential functions, inverse functions.
  • Graphs of simple functions.
  • Limits, continuity, and differentiability.
  • Differentiation of the sum, difference, product, and quotient of two functions.
  • Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions; derivatives of order up to two.
  • Rolle’s and Lagrange’s Mean Value Theorems.
  • Rate of change of quantities, monotonic – increasing and decreasing functions, Maxima, and minima of functions of one variable, tangents, and normals
9. Integral Calculus
  • Integral as an antiderivative.
  • Fundamental integrals involving algebraic, trigonometric, exponential and logarithmic functions.
  • Integration by substitution, by parts, and by partial fractions.
  • Integration using trigonometric identities
  • Integral as limit of a sum
  • Simple Integrals, Fundamental Theorem of Calculus.
  • Properties of definite integrals, evaluation of definite integrals,
  • Determining areas of the regions bounded by simple curves in standard form
10. Differential Equations
  • Ordinary differential equations, their order, and degree.
  • Formation of differential equations.
  • The solution of differential equations by the method of separation of variables.
  • The solution of homogeneous and linear differential equations of the type.
11. Coordinate Geometry
  • Cartesian system of rectangular coordinates in a plane, distance formula, section formula,
  • Locus and its equation, translation of axes, the slope of a line,
  • Parallel and perpendicular lines, intercepts of a line on the coordinate axes.
  • Straight lines
  • The distance of a point from a line, equations of internal and external bisectors of angles between two lines,
  • Coordinates of the centroid, orthocentre, and circumcentre of a triangle,
  • Equation of the family of lines passing through the point of intersection of two lines.
  • Circles, conic sections: Standard form of equation of a circle, a general form of the equation of a circle, its radius and centre,
  • Equation of a circle when the endpoints of a diameter are given, points of intersection of a line and
  • Circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent.
  • Sections of cones, equations of conic sections (parabola, ellipse, and hyperbola) in standard forms,
  • Condition for y = mx + c to be a tangent and point (s) of tangency.
12. Three Dimensional Geometry
  • Coordinates of a point in space, the distance between two points.
  • Section formula, direction ratios and direction cosines, the angle between two intersecting lines.
  • Skew lines, the shortest distance between them and its equation.
  • Equations of a line and a plane in different forms, the intersection of a line and a plane, coplanar lines.
13. Vector Algebra
  • Vectors and scalar
  • Components of a vector in two dimensions and three-dimensional space.
  • Scalar and vector products
14. Statistics and Probability
  • Measures of Dispersion
  • Calculation of mean, median, mode of grouped and ungrouped data.
  • Calculation of standard deviation, variance and mean deviation for grouped and ungrouped data.
  • Probability
  • Probability of an event, addition and multiplication theorems of probability,
  • Bayes theorem, probability distribution of a random variate,
  • Bernoulli trials and Binomial distribution.
15. Trigonometry
  • Trigonometric identities and equations.
  • Trigonometric functions.
  • Inverse trigonometric functions and their properties.
  • Heights and Distances
16. Mathematical Reasoning
  • Statements, logical operations and, or, implies, implied by, if and only if.
  • Understanding of tautology, contradiction, converse, and contrapositive

Weightage of JEE Main Mathematics Syllabus

An analysis of the Mathematics paper of JEE Main examination 2025 have been given below-

Maths Important Topics Weightage (%)
Complex Numbers 6
Coordinate Geometry 16
Differential & Integral Calculus 34
Fundamentals of Mathematics 4
Probability 8
Matrices 13
Trigonometry 9
Vector & 3D 10

JEE Main 2025 Drawing Test Syllabus

Drawing is included in Paper 2 of JEE Main examination. Few topics which are important for JEE Main Drawing Test are:

  • Drawing abstract shapes and geometric patterns in pen and paper.
  • Transformation of figures from 2D to 3D or vice-versa
  • Elevation of object rotation
  • Designing memory of urban scenes
  • Generation of plan
  • 3D view of an object, rotation

JEE Main 2025 Aptitude Test Syllabus

Aptitude section is included in both Paper 2 and Paper 3 of the JEE Main. The Aptitude section is divided into two parts according to the JEE Main Syllabus. The important topics from each of these parts which have been mentioned in the official JEE Main Syllabus have been given below:

Aptitude Important Topics Weightage
  • Awareness of Places, Persons, Building and Materials Texture and Objects related to Architecture
  • 3D- Perception and Appreciation of scale and proportion of Objects
3%
  • Visualizing 3D Objects from 2D drawings
4%
  • Visualizing different sides of 3D objects
3%
  • Mental Ability
2%
  • Analytical reasoning and Colour texture
1%

JEE Main 2025 Planning-based Test Syllabus

Questions based on Planning will be a part of Paper 3 i.e. B.Planning only in JEE Main 2025. This section was introduced for students along with a completely new paper in 2020. As per the sample questions provided on the official website of JEE Main 2025, it is implied that questions from Planning section will be from the following topics-

  • General Awareness – Government programs/schemes, development issues, current affairs related to rural and urban development programs etc.
  • Critical thinking, Analytical skills, Map reading skills, Graphs, Charts, Basic Statistics etc.
  • Social Sciences – Geography, History, Political Science, Economics

The official JEE Main 2025 syllabus will be available for download as soon as it is released by NTA.

Best Books for JEE Main Syllabus 2025

Chemistry

Name of the Book Author
Organic Chemistry O.P. Tandon
Physical Chemistry O.P. Tandon
Numerical Chemistry P. Bahadur

Physics

Name of the Book Author
IIT JEE Physics D.C. Pandey
Concepts of Physics H.C. Verma
Fundamentals of Physics Resnick, Halliday and Walker

Mathematics

Name of the Book Author
Mathematics XI and XII R.D. Sharma
Higher Algebra Hall & Knight
Problems of Calculus in one Variable I.A. Maron

Drawing

Name of the Book Author
B.Arch/ B. Planning Aptitude Test for J.E.E. (Main) S C Garg
A Complete Self-guide for B.Arch Entrance Examination P K Mishra

Aptitude

Name of the Book Author
Verbal and Non-Verbal Reasoning R.S. Aggarwal
Quantitative Aptitude R.S. Aggarwal

Planning

Name of the Book Author
Contemporary India Part – 2 Textbook in Geography for Class – 10 NCERT
Democratic Politics – II Textbook in Social Science for Class 10 NCERT
India and the Contemporary World – 2 Textbook in History for Class – 10 NCERT
Understanding Economic Development – Textbook in Social Science for Class – 10 NCERT
Current Affair Yearly (2025) Arihant

JEE Main Syllabus is based on class XI and XII syllabus. Preparation of one will automatically help you get ready for the other. The students are advised to focus more on JEE Main important topics and chapters for efficient learning and preparation.

JEE Main Exam Pattern for Paper 1 (B.E/B.Tech)

  • Out of these 25 questions, 20 will be of MCQ type and the rest 5 questions will be numerical value-based questions.
  • Numerical value-based questions will not have negative marking.
  • All the three sections will be given equal weightage. The total marks of Paper 1 are 300.
  • However, there are chances that the exam pattern will be further changed in 2021.
  • The new exam pattern will be updated as soon as it is released by NTA.
Section Number of Questions Type of Questions
Physics Total: 25 MCQ Type: 20
Numerical Value Type: 5
Chemistry Total: 25 MCQ Type: 20
Numerical Value Type: 5
Mathematics Total: 25 MCQ Type: 20
Numerical Value Type: 5

JEE Main Exam Pattern for Paper 2 (B.Arch)

Paper 2 will have a total of 77 questions divided into three sections – Aptitude, Mathematics and Drawing. The Mathematics section will be the same as Paper 1. The Drawing section previously had 3 questions but from 2020 onwards, it will have 2 questions of 50 marks each. Only this section will be conducted in an offline mode (Pen and Paper-based). The total marks of Paper 2 will constitute a total of 400 marks. Check B.Arch Exam Pattern in Detail

Section Number of Questions Type of Questions
Aptitude Total: 50 MCQ Type: 50
Drawing Total: 2 Drawing Type: 2
Mathematics Total: 25 MCQ Type: 20
Numerical Value Type: 5

JEE Main Exam Pattern for Paper 3 (B.Planning)

This is a new paper introduced in 2020 for B.Planning courses in colleges. JEE Main syllabus for paper 3 will have a total of 100 questions which will be divided into three sections – Aptitude, Mathematics and Planning. Here too, the Mathematics section will be the same as Paper 1. Paper 3 will constitute a total of 400 marks. Check B.Plan Exam Pattern

Section Number of Questions Type of Questions
Aptitude Total: 50 MCQ Type: 50
Planning-based questions Total: 25 MCQ Type: 25
Mathematics Total: 25 MCQ Type: 20 Numerical Value Type: 5

FAQs

Ques. Can a student appear for both B. Arch and B.Planning examination?

Ans. Yes, a student can sit for both B.Arch and B.Planning examination. In that case, the duration of the examination will be 3 hours and 30 minutes.

Ques. Can we expect reduction in JEE Main 2025 Syllabus?

Ques. Does the JEE Main Syllabus include topics from both Class XI and XII?

Ques. What are the important topics for Mathematics according to the JEE Main Syllabus?

Ans. Two of the most important topics for Mathematics from which the majority of questions are asked are Trigonometry and Calculus.

Ques. Is the JEE Main Syllabus and JEE Advanced Syllabus different?

Ans. No, the JEE Main Syllabus and the JEE Advanced Syllabus is mostly the same but the question pattern is different.

Ques. Does the JEE Main Syllabus change every year?

Ans. The JEE Main Syllabus remains mostly the same every year. One or two topics may be included or excluded from the syllabus. However, there are chances of reduction in the syllabus for 2025 exam due to the pandemic.

Ques. Is the JEE Main Syllabus for Mathematics same for all the three papers?

Ans. Yes, the JEE Main Syllabus for Mathematics is the same for Paper 1, Paper 2 and Paper 3.

Ques. Will the syllabus remain the same for JEE Main 2025 paper 1 and paper 2?

Ans. No, The JEE Main 2025 syllabus for paper 1 and paper 2 will be completely different. Paper 1 comprises three major subjects – Physics, Chemistry, and Mathematics whereas paper 2 comprises of Aptitude, Drawing, and Mathematics

Ques. What is the weightage of Kinematics Questions in JEE Main 2025?

Ans. From JEE Main 2025 point of view Kinematics is a very important chapter because of mainly two reasons:

  1. Its weightage is high
  2. Kinematics is the most basic chapter of mechanics and can be applied in almost any topic of physics.

Candidates must have conceptual clarity when it comes to topics like Kinematics.

Ques. What are the important topics in JEE Main 2025 Paper 1?

Ans. The topics vital for Paper 1 in JEE Main 2025 are tabulated below:

Subject Topic
Physics Current Electricity & Heat Transfer, Dimensional Analysis, Waves & Sounds, Thermodynamics, Kinetic Theory of Gases and Rotational Dynamics and Electromagnetic Induction, Gravitation & Electro-statistics, Geometrical Optics.
Chemistry Mole concept & the concept of equivalents, Redox reactions, Electrochemistry, Coordination chemistry, Chemical bonding, and Qualitative analysis, Thermodynamics, Chemical Equilibrium, Carbonyl Compounds & their derivatives.
Mathematics Inverse Trigonometric Functions, Circles, and Family of Circles, Sequence, and Series, Probability, Hyperbola in coordinate geometry, Parabola; Functions, Continuity & Differentiability, Limits, Application of derivatives, Definite integral in calculus, Vectors, Quadratic equations and expressions, Complex numbers, Matrices.

Ques. What are the vital topics for JEE Main 2025 Paper 2?

Ans. The important topics for JEE Main 2025 Paper 2 are listed below:

  • Harmony, Contrast, and Colour texture.
  • 3D– perception, appreciation of scale and proportion of building forms, objects, and elements
  • Design and drawing of abstract or geometrical shapes and patterns in pencil
  • Transformation of forms both 2D and 3D union, Rotation, Elevations, Generation of Plan, 3D views of objects, Subtraction, Development of surfaces, and volumes.
  • Sketching
  • 2D and 3D compositions using given forms and shapes

Ques Will the JEE Main syllabus have questions from Class XI also?

Ans. JEE Main syllabus covers topics from Class XI and XII both. Therefore, a lot of chapters from Physics, Chemistry, and Mathematics become equally vital both for Boards and the JEE Main Exam from both the classes.

Ques. When will be JEE Main 2025 be conducted?

Ans. JEE Main 2025 Phase 1 is scheduled to be conducted from 16 to 21 April 2025 while JEE Main Phase 2 will be conducted from 24 to 29 May 2025.